Ein Rydberg-Zustand (nach dem schwedischen Physiker Johannes Rydberg) ist ein quantenmechanischer Zustand eines Atoms, Ions oder Moleküls, bei dem das äußerste Elektron wesentlich weiter vom Zentrum entfernt ist als im Grundzustand. Ein Atom in solchem Zustand wird als Rydberg-Atom bezeichnet und schon im einfachsten quantenmechanischen Ansatz für das Wasserstoffproblem gut beschrieben.

Property Value
dbo:abstract
  • Ein Rydberg-Zustand (nach dem schwedischen Physiker Johannes Rydberg) ist ein quantenmechanischer Zustand eines Atoms, Ions oder Moleküls, bei dem das äußerste Elektron wesentlich weiter vom Zentrum entfernt ist als im Grundzustand. Ein Atom in solchem Zustand wird als Rydberg-Atom bezeichnet und schon im einfachsten quantenmechanischen Ansatz für das Wasserstoffproblem gut beschrieben. In Übereinstimmung mit dem Korrespondenzprinzip geht bei großen Quantenzahlen die quantenmechanische Beschreibung des Rydberg-Atoms in die klassische Beschreibung über. Tatsächlich kann das Elektron hier in guter Näherung als klassisches Teilchen behandelt werden, wie es beim Bohrschen Atommodell oder beim Bohr-Sommerfeldschen Atommodell zugrundegelegt wird. Aufgrund ihrer im Vergleich zu gewöhnlichen Atomen großen Ausdehnung und großen Anzahl an eng benachbarten oder (fast) entarteten Energieniveaus reagieren Rydberg-Atome besonders empfindlich auf elektrische und magnetische Felder. So zeigt ein Rydberg-Atom, das durch einen verspiegelten Hohlraum mit einem einzigen darin gefangenen Photon hindurchfliegt, Veränderungen seiner Wellenfunktion. Damit kann z. B. die Anwesenheit des Photons nachgewiesen werden, ohne es weiter zu beeinflussen (sog. quantum non demolition-Messung). Für die Entwicklung von darauf basierenden experimentellen Methoden von sonst unerreichter Empfindlichkeit und Genauigkeit erhielten Serge Haroche und David Wineland den Nobelpreis für Physik 2012. (de)
  • Ein Rydberg-Zustand (nach dem schwedischen Physiker Johannes Rydberg) ist ein quantenmechanischer Zustand eines Atoms, Ions oder Moleküls, bei dem das äußerste Elektron wesentlich weiter vom Zentrum entfernt ist als im Grundzustand. Ein Atom in solchem Zustand wird als Rydberg-Atom bezeichnet und schon im einfachsten quantenmechanischen Ansatz für das Wasserstoffproblem gut beschrieben. In Übereinstimmung mit dem Korrespondenzprinzip geht bei großen Quantenzahlen die quantenmechanische Beschreibung des Rydberg-Atoms in die klassische Beschreibung über. Tatsächlich kann das Elektron hier in guter Näherung als klassisches Teilchen behandelt werden, wie es beim Bohrschen Atommodell oder beim Bohr-Sommerfeldschen Atommodell zugrundegelegt wird. Aufgrund ihrer im Vergleich zu gewöhnlichen Atomen großen Ausdehnung und großen Anzahl an eng benachbarten oder (fast) entarteten Energieniveaus reagieren Rydberg-Atome besonders empfindlich auf elektrische und magnetische Felder. So zeigt ein Rydberg-Atom, das durch einen verspiegelten Hohlraum mit einem einzigen darin gefangenen Photon hindurchfliegt, Veränderungen seiner Wellenfunktion. Damit kann z. B. die Anwesenheit des Photons nachgewiesen werden, ohne es weiter zu beeinflussen (sog. quantum non demolition-Messung). Für die Entwicklung von darauf basierenden experimentellen Methoden von sonst unerreichter Empfindlichkeit und Genauigkeit erhielten Serge Haroche und David Wineland den Nobelpreis für Physik 2012. (de)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 276685 (xsd:integer)
dbo:wikiPageRevisionID
  • 135099560 (xsd:integer)
dct:subject
rdfs:comment
  • Ein Rydberg-Zustand (nach dem schwedischen Physiker Johannes Rydberg) ist ein quantenmechanischer Zustand eines Atoms, Ions oder Moleküls, bei dem das äußerste Elektron wesentlich weiter vom Zentrum entfernt ist als im Grundzustand. Ein Atom in solchem Zustand wird als Rydberg-Atom bezeichnet und schon im einfachsten quantenmechanischen Ansatz für das Wasserstoffproblem gut beschrieben. (de)
  • Ein Rydberg-Zustand (nach dem schwedischen Physiker Johannes Rydberg) ist ein quantenmechanischer Zustand eines Atoms, Ions oder Moleküls, bei dem das äußerste Elektron wesentlich weiter vom Zentrum entfernt ist als im Grundzustand. Ein Atom in solchem Zustand wird als Rydberg-Atom bezeichnet und schon im einfachsten quantenmechanischen Ansatz für das Wasserstoffproblem gut beschrieben. (de)
rdfs:label
  • Rydberg-Zustand (de)
  • Rydberg-Zustand (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of