Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit d

Property Value
dbo:abstract
  • Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit der Peano-Arithmetik verwandt sind, sind die Robinson-Arithmetik und die Primitiv rekursive Arithmetik. Richard Dedekind bewies bereits 1888 den sogenannten Isomorphiesatz von Dedekind, dass alle Modelle der Peano-Arithmetik mit Induktionsaxiom zweiter Stufe isomorph zum Standardmodell sind, d. h. dass die Struktur der natürlichen Zahlen so bis auf Benennung eindeutig charakterisiert wird. Dies gilt dagegen nicht für die erststufige Formalisierung, aus dem Satz von Löwenheim-Skolem folgt die Existenz von paarweise nicht isomorphen Modellen (u. a. Modellen jeder unendlichen Kardinalität), die die Peano-Axiome erfüllen. (de)
  • Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit der Peano-Arithmetik verwandt sind, sind die Robinson-Arithmetik und die Primitiv rekursive Arithmetik. Richard Dedekind bewies bereits 1888 den sogenannten Isomorphiesatz von Dedekind, dass alle Modelle der Peano-Arithmetik mit Induktionsaxiom zweiter Stufe isomorph zum Standardmodell sind, d. h. dass die Struktur der natürlichen Zahlen so bis auf Benennung eindeutig charakterisiert wird. Dies gilt dagegen nicht für die erststufige Formalisierung, aus dem Satz von Löwenheim-Skolem folgt die Existenz von paarweise nicht isomorphen Modellen (u. a. Modellen jeder unendlichen Kardinalität), die die Peano-Axiome erfüllen. (de)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4149 (xsd:integer)
dbo:wikiPageRevisionID
  • 155051080 (xsd:integer)
dct:subject
rdfs:comment
  • Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit d (de)
  • Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit d (de)
rdfs:label
  • Peano-Axiome (de)
  • Peano-Axiome (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of