Kryotechnik, Kryogenik (von griechisch κρύος [kryos] „kalt“) oder Tieftemperaturtechnik ist die Technik zur Erzeugung tiefer Temperaturen (Joule-Thomson-Effekt) und zur Nutzung physikalischer Effekte bei tiefen Temperaturen (Verflüssigung und Trennung von Gasen). Die Kryotechnik deckt den Temperaturbereich unterhalb etwa -150 °C ab. Technisch einfach zugänglich sind Temperaturen von 77,4 K (-195,8 °C), dem Siedepunkt von Stickstoff, 20,4 K (mit Wasserstoff), und 4,2 K (mit Helium). Tiefere Temperaturen sind durch Druckverminderung und die damit verbundene Änderung der Siedepunkte erreichbar. Mit Helium kommt man damit bis auf ca. 1 K, mit dem (teuren) Isotop 3He sogar bis auf 1 mK. Eine breite Anwendung findet flüssiges Helium in der Kühlung von supraleitenden Wicklungen von Elektromagnete

Property Value
dbo:abstract
  • Kryotechnik, Kryogenik (von griechisch κρύος [kryos] „kalt“) oder Tieftemperaturtechnik ist die Technik zur Erzeugung tiefer Temperaturen (Joule-Thomson-Effekt) und zur Nutzung physikalischer Effekte bei tiefen Temperaturen (Verflüssigung und Trennung von Gasen). Die Kryotechnik deckt den Temperaturbereich unterhalb etwa -150 °C ab. Technisch einfach zugänglich sind Temperaturen von 77,4 K (-195,8 °C), dem Siedepunkt von Stickstoff, 20,4 K (mit Wasserstoff), und 4,2 K (mit Helium). Tiefere Temperaturen sind durch Druckverminderung und die damit verbundene Änderung der Siedepunkte erreichbar. Mit Helium kommt man damit bis auf ca. 1 K, mit dem (teuren) Isotop 3He sogar bis auf 1 mK. Eine breite Anwendung findet flüssiges Helium in der Kühlung von supraleitenden Wicklungen von Elektromagneten. (de)
  • Kryotechnik, Kryogenik (von griechisch κρύος [kryos] „kalt“) oder Tieftemperaturtechnik ist die Technik zur Erzeugung tiefer Temperaturen (Joule-Thomson-Effekt) und zur Nutzung physikalischer Effekte bei tiefen Temperaturen (Verflüssigung und Trennung von Gasen). Die Kryotechnik deckt den Temperaturbereich unterhalb etwa -150 °C ab. Technisch einfach zugänglich sind Temperaturen von 77,4 K (-195,8 °C), dem Siedepunkt von Stickstoff, 20,4 K (mit Wasserstoff), und 4,2 K (mit Helium). Tiefere Temperaturen sind durch Druckverminderung und die damit verbundene Änderung der Siedepunkte erreichbar. Mit Helium kommt man damit bis auf ca. 1 K, mit dem (teuren) Isotop 3He sogar bis auf 1 mK. Eine breite Anwendung findet flüssiges Helium in der Kühlung von supraleitenden Wicklungen von Elektromagneten. (de)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 545274 (xsd:integer)
dbo:wikiPageRevisionID
  • 157448141 (xsd:integer)
dct:subject
rdfs:comment
  • Kryotechnik, Kryogenik (von griechisch κρύος [kryos] „kalt“) oder Tieftemperaturtechnik ist die Technik zur Erzeugung tiefer Temperaturen (Joule-Thomson-Effekt) und zur Nutzung physikalischer Effekte bei tiefen Temperaturen (Verflüssigung und Trennung von Gasen). Die Kryotechnik deckt den Temperaturbereich unterhalb etwa -150 °C ab. Technisch einfach zugänglich sind Temperaturen von 77,4 K (-195,8 °C), dem Siedepunkt von Stickstoff, 20,4 K (mit Wasserstoff), und 4,2 K (mit Helium). Tiefere Temperaturen sind durch Druckverminderung und die damit verbundene Änderung der Siedepunkte erreichbar. Mit Helium kommt man damit bis auf ca. 1 K, mit dem (teuren) Isotop 3He sogar bis auf 1 mK. Eine breite Anwendung findet flüssiges Helium in der Kühlung von supraleitenden Wicklungen von Elektromagnete (de)
  • Kryotechnik, Kryogenik (von griechisch κρύος [kryos] „kalt“) oder Tieftemperaturtechnik ist die Technik zur Erzeugung tiefer Temperaturen (Joule-Thomson-Effekt) und zur Nutzung physikalischer Effekte bei tiefen Temperaturen (Verflüssigung und Trennung von Gasen). Die Kryotechnik deckt den Temperaturbereich unterhalb etwa -150 °C ab. Technisch einfach zugänglich sind Temperaturen von 77,4 K (-195,8 °C), dem Siedepunkt von Stickstoff, 20,4 K (mit Wasserstoff), und 4,2 K (mit Helium). Tiefere Temperaturen sind durch Druckverminderung und die damit verbundene Änderung der Siedepunkte erreichbar. Mit Helium kommt man damit bis auf ca. 1 K, mit dem (teuren) Isotop 3He sogar bis auf 1 mK. Eine breite Anwendung findet flüssiges Helium in der Kühlung von supraleitenden Wicklungen von Elektromagnete (de)
rdfs:label
  • Kryotechnik (de)
  • Kryotechnik (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of