Als absolute Geometrie im engsten Sinn wird die Gesamtheit der geometrischen Sätze über einen dreidimensionalen Raum bezeichnet, die man allein aufgrund der Axiome der Verknüpfung (Inzidenzaxiomen) (H-I), der Anordnung (H-II), der Kongruenz (H-III) und der Stetigkeit (H-V), also ohne das Parallelenaxiom – herleiten kann. Die in Klammern genannten Bezeichnungen sind hier Axiomengruppe I, II, III und V in Hilberts Axiomensystem der euklidischen Geometrie. In einem weiteren Sinne zählt man auch zweidimensionale Modelle, die den Axiomengruppen H-I bis H-III in ihrer zweidimensionalen Form genügen, die sogenannten Hilbert-Ebenen, zur absoluten Geometrie, dies sind (in den Hauptfällen) euklidische oder hyperbolische Ebenen über pythagoreischen Körpern.

Property Value
dbo:abstract
  • Als absolute Geometrie im engsten Sinn wird die Gesamtheit der geometrischen Sätze über einen dreidimensionalen Raum bezeichnet, die man allein aufgrund der Axiome der Verknüpfung (Inzidenzaxiomen) (H-I), der Anordnung (H-II), der Kongruenz (H-III) und der Stetigkeit (H-V), also ohne das Parallelenaxiom – herleiten kann. Die in Klammern genannten Bezeichnungen sind hier Axiomengruppe I, II, III und V in Hilberts Axiomensystem der euklidischen Geometrie. In einem weiteren Sinne zählt man auch zweidimensionale Modelle, die den Axiomengruppen H-I bis H-III in ihrer zweidimensionalen Form genügen, die sogenannten Hilbert-Ebenen, zur absoluten Geometrie, dies sind (in den Hauptfällen) euklidische oder hyperbolische Ebenen über pythagoreischen Körpern. Es handelt sich also um die Menge der Sätze, die sowohl in der euklidischen Geometrie als auch in den nichteuklidischen Geometrien Gültigkeit haben, oder anders ausgedrückt um den „gemeinsamen Unterbau“ dieser Geometrien. Beispielsweise gehören einige Kongruenzsätze zur absoluten Geometrie, der Satz über die Winkelsumme im Dreieck und der Satz des Pythagoras jedoch nicht. In Euklids Elementen werden die ersten 28 Sätze ohne das Parallelenaxiom bewiesen und zählen somit zur absoluten Geometrie im engeren Sinn. (de)
  • Als absolute Geometrie im engsten Sinn wird die Gesamtheit der geometrischen Sätze über einen dreidimensionalen Raum bezeichnet, die man allein aufgrund der Axiome der Verknüpfung (Inzidenzaxiomen) (H-I), der Anordnung (H-II), der Kongruenz (H-III) und der Stetigkeit (H-V), also ohne das Parallelenaxiom – herleiten kann. Die in Klammern genannten Bezeichnungen sind hier Axiomengruppe I, II, III und V in Hilberts Axiomensystem der euklidischen Geometrie. In einem weiteren Sinne zählt man auch zweidimensionale Modelle, die den Axiomengruppen H-I bis H-III in ihrer zweidimensionalen Form genügen, die sogenannten Hilbert-Ebenen, zur absoluten Geometrie, dies sind (in den Hauptfällen) euklidische oder hyperbolische Ebenen über pythagoreischen Körpern. Es handelt sich also um die Menge der Sätze, die sowohl in der euklidischen Geometrie als auch in den nichteuklidischen Geometrien Gültigkeit haben, oder anders ausgedrückt um den „gemeinsamen Unterbau“ dieser Geometrien. Beispielsweise gehören einige Kongruenzsätze zur absoluten Geometrie, der Satz über die Winkelsumme im Dreieck und der Satz des Pythagoras jedoch nicht. In Euklids Elementen werden die ersten 28 Sätze ohne das Parallelenaxiom bewiesen und zählen somit zur absoluten Geometrie im engeren Sinn. (de)
dbo:author
dbo:isbn
  • 3-519-00237-X
  • 3-8171-1583-0
  • 3-540-06136-3
  • 9780198539353
dbo:originalTitle
  • Nichteuklidische Geometrie (de)
  • Grundlagen der Geometrie (de)
  • Aufbau der Geometrie aus dem Spiegelungsbegriff (de)
  • Ideas of Space: Euclidean, Non-Euclidean, and Relativistic (de)
  • Euklidische und nichteuklidische Elementargeometrien (de)
  • Nichteuklidische Geometrie (de)
  • Grundlagen der Geometrie (de)
  • Aufbau der Geometrie aus dem Spiegelungsbegriff (de)
  • Ideas of Space: Euclidean, Non-Euclidean, and Relativistic (de)
  • Euklidische und nichteuklidische Elementargeometrien (de)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 194202 (xsd:integer)
dbo:wikiPageRevisionID
  • 143838547 (xsd:integer)
prop-de:auflage
  • 1 (xsd:integer)
  • 2 (xsd:integer)
  • 3 (xsd:integer)
  • 14 (xsd:integer)
prop-de:autor
  • Benno Klotzek
  • Jeremy Gray
prop-de:band
  • 970 (xsd:integer)
prop-de:jahr
  • 1954 (xsd:integer)
  • 1973 (xsd:integer)
  • 1989 (xsd:integer)
  • 2001 (xsd:integer)
prop-de:online
prop-de:ort
  • Berlin
  • Berlin/Heidelberg/New York
  • Frankfurt am Main
  • Oxford
  • Stuttgart/Leipzig
prop-de:reihe
  • Sammlung Göschen
prop-de:zugriff
  • 2012-11-30 (xsd:date)
dc:publisher
  • Harri Deutsch
  • Oxford University Press
  • Springer
  • Teubner
dct:subject
rdf:type
rdfs:comment
  • Als absolute Geometrie im engsten Sinn wird die Gesamtheit der geometrischen Sätze über einen dreidimensionalen Raum bezeichnet, die man allein aufgrund der Axiome der Verknüpfung (Inzidenzaxiomen) (H-I), der Anordnung (H-II), der Kongruenz (H-III) und der Stetigkeit (H-V), also ohne das Parallelenaxiom – herleiten kann. Die in Klammern genannten Bezeichnungen sind hier Axiomengruppe I, II, III und V in Hilberts Axiomensystem der euklidischen Geometrie. In einem weiteren Sinne zählt man auch zweidimensionale Modelle, die den Axiomengruppen H-I bis H-III in ihrer zweidimensionalen Form genügen, die sogenannten Hilbert-Ebenen, zur absoluten Geometrie, dies sind (in den Hauptfällen) euklidische oder hyperbolische Ebenen über pythagoreischen Körpern. (de)
  • Als absolute Geometrie im engsten Sinn wird die Gesamtheit der geometrischen Sätze über einen dreidimensionalen Raum bezeichnet, die man allein aufgrund der Axiome der Verknüpfung (Inzidenzaxiomen) (H-I), der Anordnung (H-II), der Kongruenz (H-III) und der Stetigkeit (H-V), also ohne das Parallelenaxiom – herleiten kann. Die in Klammern genannten Bezeichnungen sind hier Axiomengruppe I, II, III und V in Hilberts Axiomensystem der euklidischen Geometrie. In einem weiteren Sinne zählt man auch zweidimensionale Modelle, die den Axiomengruppen H-I bis H-III in ihrer zweidimensionalen Form genügen, die sogenannten Hilbert-Ebenen, zur absoluten Geometrie, dies sind (in den Hauptfällen) euklidische oder hyperbolische Ebenen über pythagoreischen Körpern. (de)
rdfs:label
  • Absolute Geometrie (de)
  • Absolute Geometrie (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of