Eine Abbildung, die eine Menge in sich selbst abbildet, heißt in der Mathematik Selbstabbildung. Diese Abbildungen spielen in allen Zweigen der Mathematik eine wichtige Rolle: Einerseits können durch die Veränderungen, die die Struktur der Menge bei der Selbstabbildung erfährt, Informationen über diese Struktur gewonnen werden, andererseits lassen sich ein Element und sein Bildelement direkt miteinander vergleichen, da die Abbildung aus ihrem Definitionsbereich nicht hinausführt und wiederholt angewendet werden kann. .

Property Value
dbo:abstract
  • Eine Abbildung, die eine Menge in sich selbst abbildet, heißt in der Mathematik Selbstabbildung. Diese Abbildungen spielen in allen Zweigen der Mathematik eine wichtige Rolle: Einerseits können durch die Veränderungen, die die Struktur der Menge bei der Selbstabbildung erfährt, Informationen über diese Struktur gewonnen werden, andererseits lassen sich ein Element und sein Bildelement direkt miteinander vergleichen, da die Abbildung aus ihrem Definitionsbereich nicht hinausführt und wiederholt angewendet werden kann. Das einfachste Beispiel für eine Selbstabbildung ist die identische Abbildung: . Das erste Konzept, Strukturen durch ihre strukturtreuen bzw. strukturverträglichen Selbstabbildungen zu beschreiben, wurde durch das Erlanger Programm von Felix Klein zuerst in die Geometrie eingeführt und gehört zu den fruchtbarsten Ideen der modernen Mathematik. Das zweite Konzept, das auf der Vergleichbarkeit von Urbild und Bild und der Iterierbarkeit von Selbstabbildungen aufbaut, ist für die Numerik unverzichtbar und gehört zu den grundlegenden Konzepten der Fraktalen Geometrie. (de)
  • Eine Abbildung, die eine Menge in sich selbst abbildet, heißt in der Mathematik Selbstabbildung. Diese Abbildungen spielen in allen Zweigen der Mathematik eine wichtige Rolle: Einerseits können durch die Veränderungen, die die Struktur der Menge bei der Selbstabbildung erfährt, Informationen über diese Struktur gewonnen werden, andererseits lassen sich ein Element und sein Bildelement direkt miteinander vergleichen, da die Abbildung aus ihrem Definitionsbereich nicht hinausführt und wiederholt angewendet werden kann. Das einfachste Beispiel für eine Selbstabbildung ist die identische Abbildung: . Das erste Konzept, Strukturen durch ihre strukturtreuen bzw. strukturverträglichen Selbstabbildungen zu beschreiben, wurde durch das Erlanger Programm von Felix Klein zuerst in die Geometrie eingeführt und gehört zu den fruchtbarsten Ideen der modernen Mathematik. Das zweite Konzept, das auf der Vergleichbarkeit von Urbild und Bild und der Iterierbarkeit von Selbstabbildungen aufbaut, ist für die Numerik unverzichtbar und gehört zu den grundlegenden Konzepten der Fraktalen Geometrie. (de)
dbo:wikiPageID
  • 2040297 (xsd:integer)
dbo:wikiPageRevisionID
  • 144263861 (xsd:integer)
dct:subject
rdfs:comment
  • Eine Abbildung, die eine Menge in sich selbst abbildet, heißt in der Mathematik Selbstabbildung. Diese Abbildungen spielen in allen Zweigen der Mathematik eine wichtige Rolle: Einerseits können durch die Veränderungen, die die Struktur der Menge bei der Selbstabbildung erfährt, Informationen über diese Struktur gewonnen werden, andererseits lassen sich ein Element und sein Bildelement direkt miteinander vergleichen, da die Abbildung aus ihrem Definitionsbereich nicht hinausführt und wiederholt angewendet werden kann. . (de)
  • Eine Abbildung, die eine Menge in sich selbst abbildet, heißt in der Mathematik Selbstabbildung. Diese Abbildungen spielen in allen Zweigen der Mathematik eine wichtige Rolle: Einerseits können durch die Veränderungen, die die Struktur der Menge bei der Selbstabbildung erfährt, Informationen über diese Struktur gewonnen werden, andererseits lassen sich ein Element und sein Bildelement direkt miteinander vergleichen, da die Abbildung aus ihrem Definitionsbereich nicht hinausführt und wiederholt angewendet werden kann. . (de)
rdfs:label
  • Selbstabbildung (de)
  • Selbstabbildung (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of