Der Satz von Eberlein–Šmulian (nach William Frederick Eberlein und Witold Lwowitsch Šmulian) ist ein mathematischer Satz aus der Funktionalanalysis, der eine Aussage über Kompaktheitseigenschaften bezüglich der schwachen Topologie eines Banachraums macht. In der Topologie wird die Folgenkompaktheit als Variante der Kompaktheit untersucht. Keiner dieser beiden Begriffe folgt aus dem jeweils anderen. Sei zum Beispiel die Einheitskugel im Dualraum des Folgenraums . Mit der schwach-*-Topologie ist nach dem Satz von Banach-Alaoglu kompakt. ist nicht folgenkompakt, denn ist , so ist eine Folge in

Property Value
dbo:abstract
  • Der Satz von Eberlein–Šmulian (nach William Frederick Eberlein und Witold Lwowitsch Šmulian) ist ein mathematischer Satz aus der Funktionalanalysis, der eine Aussage über Kompaktheitseigenschaften bezüglich der schwachen Topologie eines Banachraums macht. In der Topologie wird die Folgenkompaktheit als Variante der Kompaktheit untersucht. Keiner dieser beiden Begriffe folgt aus dem jeweils anderen. Sei zum Beispiel die Einheitskugel im Dualraum des Folgenraums . Mit der schwach-*-Topologie ist nach dem Satz von Banach-Alaoglu kompakt. ist nicht folgenkompakt, denn ist , so ist eine Folge in , die keine konvergente Teilfolge hat. Umgekehrt gibt es folgenkompakte Räume, die nicht kompakt sind. Es ist ein bekannter Satz, dass in metrischen Räumen die Begriffe Kompaktheit und Folgenkompaktheit zusammenfallen. Da die schwache Topologie auf einem Banachraum nicht metrisierbar ist, außer im endlichdimensionalen Fall,ist der folgende Satz von Eberlein–Šmulian bemerkenswert. (de)
  • Der Satz von Eberlein–Šmulian (nach William Frederick Eberlein und Witold Lwowitsch Šmulian) ist ein mathematischer Satz aus der Funktionalanalysis, der eine Aussage über Kompaktheitseigenschaften bezüglich der schwachen Topologie eines Banachraums macht. In der Topologie wird die Folgenkompaktheit als Variante der Kompaktheit untersucht. Keiner dieser beiden Begriffe folgt aus dem jeweils anderen. Sei zum Beispiel die Einheitskugel im Dualraum des Folgenraums . Mit der schwach-*-Topologie ist nach dem Satz von Banach-Alaoglu kompakt. ist nicht folgenkompakt, denn ist , so ist eine Folge in , die keine konvergente Teilfolge hat. Umgekehrt gibt es folgenkompakte Räume, die nicht kompakt sind. Es ist ein bekannter Satz, dass in metrischen Räumen die Begriffe Kompaktheit und Folgenkompaktheit zusammenfallen. Da die schwache Topologie auf einem Banachraum nicht metrisierbar ist, außer im endlichdimensionalen Fall,ist der folgende Satz von Eberlein–Šmulian bemerkenswert. (de)
dbo:wikiPageID
  • 4023436 (xsd:integer)
dbo:wikiPageRevisionID
  • 152015629 (xsd:integer)
dct:subject
rdfs:comment
  • Der Satz von Eberlein–Šmulian (nach William Frederick Eberlein und Witold Lwowitsch Šmulian) ist ein mathematischer Satz aus der Funktionalanalysis, der eine Aussage über Kompaktheitseigenschaften bezüglich der schwachen Topologie eines Banachraums macht. In der Topologie wird die Folgenkompaktheit als Variante der Kompaktheit untersucht. Keiner dieser beiden Begriffe folgt aus dem jeweils anderen. Sei zum Beispiel die Einheitskugel im Dualraum des Folgenraums . Mit der schwach-*-Topologie ist nach dem Satz von Banach-Alaoglu kompakt. ist nicht folgenkompakt, denn ist , so ist eine Folge in (de)
  • Der Satz von Eberlein–Šmulian (nach William Frederick Eberlein und Witold Lwowitsch Šmulian) ist ein mathematischer Satz aus der Funktionalanalysis, der eine Aussage über Kompaktheitseigenschaften bezüglich der schwachen Topologie eines Banachraums macht. In der Topologie wird die Folgenkompaktheit als Variante der Kompaktheit untersucht. Keiner dieser beiden Begriffe folgt aus dem jeweils anderen. Sei zum Beispiel die Einheitskugel im Dualraum des Folgenraums . Mit der schwach-*-Topologie ist nach dem Satz von Banach-Alaoglu kompakt. ist nicht folgenkompakt, denn ist , so ist eine Folge in (de)
rdfs:label
  • Satz von Eberlein–Šmulian (de)
  • Satz von Eberlein–Šmulian (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of