Der Pseudopotential-Formalismus in der Quantenmechanik ist ein Ansatz, um die rechenintensiven kernnahen (Nicht-Valenz-) Elektronen eines Atoms bzw. Ions sowie den Atomkern durch ein effektives Potential anzunähern. Diese Näherung ist möglich, da die kernnahen Elektronen kaum zu chemischen Bindungen beitragen. Valenzelektronen sind jedoch zu allen kernnahen Elektronen orthogonal, was zu einer starken Oszillation in Kernnähe und deshalb zu einem hohen Rechenaufwand führt. Zudem haben kernnahe Elektronen eine hohe Energie, was eine kurze Wellenlänge bedeutet, wodurch mit einer hohen Ortsauflösung gerechnet werden muss. Durch geschickte Wahl eines empirischen Potentials lässt sich der Aufwand zum Lösen der Schrödingergleichung massiv reduzieren. Die Wellenfunktion der Valenzelektronen ist dan

Property Value
dbo:abstract
  • Der Pseudopotential-Formalismus in der Quantenmechanik ist ein Ansatz, um die rechenintensiven kernnahen (Nicht-Valenz-) Elektronen eines Atoms bzw. Ions sowie den Atomkern durch ein effektives Potential anzunähern. Diese Näherung ist möglich, da die kernnahen Elektronen kaum zu chemischen Bindungen beitragen. Valenzelektronen sind jedoch zu allen kernnahen Elektronen orthogonal, was zu einer starken Oszillation in Kernnähe und deshalb zu einem hohen Rechenaufwand führt. Zudem haben kernnahe Elektronen eine hohe Energie, was eine kurze Wellenlänge bedeutet, wodurch mit einer hohen Ortsauflösung gerechnet werden muss. Durch geschickte Wahl eines empirischen Potentials lässt sich der Aufwand zum Lösen der Schrödingergleichung massiv reduzieren. Die Wellenfunktion der Valenzelektronen ist dann orthogonal zu allen Kernzuständen. Das Pseudopotential wurde zuerst 1934 von Hans Hellmann eingeführt. Die Methode fand weitverbreitete Anwendung in Bandstrukturrechnungen der Festkörperphysik, wobei James C. Phillips Ende der 1950er Jahre ein Pionier war (später mit Marvin Cohen, Volker Heine und anderen). (de)
  • Der Pseudopotential-Formalismus in der Quantenmechanik ist ein Ansatz, um die rechenintensiven kernnahen (Nicht-Valenz-) Elektronen eines Atoms bzw. Ions sowie den Atomkern durch ein effektives Potential anzunähern. Diese Näherung ist möglich, da die kernnahen Elektronen kaum zu chemischen Bindungen beitragen. Valenzelektronen sind jedoch zu allen kernnahen Elektronen orthogonal, was zu einer starken Oszillation in Kernnähe und deshalb zu einem hohen Rechenaufwand führt. Zudem haben kernnahe Elektronen eine hohe Energie, was eine kurze Wellenlänge bedeutet, wodurch mit einer hohen Ortsauflösung gerechnet werden muss. Durch geschickte Wahl eines empirischen Potentials lässt sich der Aufwand zum Lösen der Schrödingergleichung massiv reduzieren. Die Wellenfunktion der Valenzelektronen ist dann orthogonal zu allen Kernzuständen. Das Pseudopotential wurde zuerst 1934 von Hans Hellmann eingeführt. Die Methode fand weitverbreitete Anwendung in Bandstrukturrechnungen der Festkörperphysik, wobei James C. Phillips Ende der 1950er Jahre ein Pionier war (später mit Marvin Cohen, Volker Heine und anderen). (de)
dbo:thumbnail
dbo:wikiPageID
  • 2851530 (xsd:integer)
dbo:wikiPageRevisionID
  • 157619197 (xsd:integer)
dct:subject
rdfs:comment
  • Der Pseudopotential-Formalismus in der Quantenmechanik ist ein Ansatz, um die rechenintensiven kernnahen (Nicht-Valenz-) Elektronen eines Atoms bzw. Ions sowie den Atomkern durch ein effektives Potential anzunähern. Diese Näherung ist möglich, da die kernnahen Elektronen kaum zu chemischen Bindungen beitragen. Valenzelektronen sind jedoch zu allen kernnahen Elektronen orthogonal, was zu einer starken Oszillation in Kernnähe und deshalb zu einem hohen Rechenaufwand führt. Zudem haben kernnahe Elektronen eine hohe Energie, was eine kurze Wellenlänge bedeutet, wodurch mit einer hohen Ortsauflösung gerechnet werden muss. Durch geschickte Wahl eines empirischen Potentials lässt sich der Aufwand zum Lösen der Schrödingergleichung massiv reduzieren. Die Wellenfunktion der Valenzelektronen ist dan (de)
  • Der Pseudopotential-Formalismus in der Quantenmechanik ist ein Ansatz, um die rechenintensiven kernnahen (Nicht-Valenz-) Elektronen eines Atoms bzw. Ions sowie den Atomkern durch ein effektives Potential anzunähern. Diese Näherung ist möglich, da die kernnahen Elektronen kaum zu chemischen Bindungen beitragen. Valenzelektronen sind jedoch zu allen kernnahen Elektronen orthogonal, was zu einer starken Oszillation in Kernnähe und deshalb zu einem hohen Rechenaufwand führt. Zudem haben kernnahe Elektronen eine hohe Energie, was eine kurze Wellenlänge bedeutet, wodurch mit einer hohen Ortsauflösung gerechnet werden muss. Durch geschickte Wahl eines empirischen Potentials lässt sich der Aufwand zum Lösen der Schrödingergleichung massiv reduzieren. Die Wellenfunktion der Valenzelektronen ist dan (de)
rdfs:label
  • Pseudopotential (de)
  • Pseudopotential (de)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of