David Hilbert verwendet für seine Axiomatische Grundlegung der euklidischen Geometrie (im dreidimensionalen Raum) „drei verschiedene Systeme von Dingen“, nämlich Punkte, Geraden und Ebenen, und „drei grundlegende Beziehungen“, nämlich liegen, zwischen und kongruent. Über die Natur dieser „Dinge“ und auch ihrer „Beziehungen“ macht Hilbert als Formalist keinerlei Annahmen. Sie sind ausschließlich implizit definiert, nämlich durch ihre Verknüpfung in einem Axiomensystem.

Property Value
dbo:abstract
  • David Hilbert verwendet für seine Axiomatische Grundlegung der euklidischen Geometrie (im dreidimensionalen Raum) „drei verschiedene Systeme von Dingen“, nämlich Punkte, Geraden und Ebenen, und „drei grundlegende Beziehungen“, nämlich liegen, zwischen und kongruent. Über die Natur dieser „Dinge“ und auch ihrer „Beziehungen“ macht Hilbert als Formalist keinerlei Annahmen. Sie sind ausschließlich implizit definiert, nämlich durch ihre Verknüpfung in einem Axiomensystem. Hilbert soll einmal gesagt haben, man könne statt „Punkte, Geraden und Ebenen“ jederzeit auch „Tische, Stühle und Bierseidel“ sagen; es komme nur darauf an, dass die Axiome erfüllt sind. Allerdings hat er große Mühe darauf verwandt, dass seine „Tische, Stühle und Bierseidel“ all die Gesetzmäßigkeiten erfüllen, die die Geometer der vorhergegangenen zweitausend Jahre für „Punkte, Geraden und Ebenen“ herausgefunden haben. Die Stärke der axiomatischen Vorgehensweise liegt nicht darin, dass sie von der Wirklichkeit absieht. Sie erlaubt es aber, durch Abänderung der Axiome und Analyse ihres Zusammenhangs die logische Struktur, der diese Wirklichkeit folgt, in einer vorher nicht denkbaren Weise zu durchleuchten. Auf ein gegenüber dem Hilbertschen System abgeschwächtes Axiomensystem ohne Parallelenaxiom, lässt sich die absolute Geometrie begründen: Dort gibt es dann entweder keine Parallelen (elliptische Geometrie) oder durch einen Punkt außerhalb einer Geraden beliebig viele Parallelen (hyperbolische Geometrie). Die hyperbolische Geometrie erfüllt Hilberts Axiomengruppen I-III und V, die elliptische Geometrie I, II und V und eine schwächere Version der Kongruenzaxiome (III). (de)
  • David Hilbert verwendet für seine Axiomatische Grundlegung der euklidischen Geometrie (im dreidimensionalen Raum) „drei verschiedene Systeme von Dingen“, nämlich Punkte, Geraden und Ebenen, und „drei grundlegende Beziehungen“, nämlich liegen, zwischen und kongruent. Über die Natur dieser „Dinge“ und auch ihrer „Beziehungen“ macht Hilbert als Formalist keinerlei Annahmen. Sie sind ausschließlich implizit definiert, nämlich durch ihre Verknüpfung in einem Axiomensystem. Hilbert soll einmal gesagt haben, man könne statt „Punkte, Geraden und Ebenen“ jederzeit auch „Tische, Stühle und Bierseidel“ sagen; es komme nur darauf an, dass die Axiome erfüllt sind. Allerdings hat er große Mühe darauf verwandt, dass seine „Tische, Stühle und Bierseidel“ all die Gesetzmäßigkeiten erfüllen, die die Geometer der vorhergegangenen zweitausend Jahre für „Punkte, Geraden und Ebenen“ herausgefunden haben. Die Stärke der axiomatischen Vorgehensweise liegt nicht darin, dass sie von der Wirklichkeit absieht. Sie erlaubt es aber, durch Abänderung der Axiome und Analyse ihres Zusammenhangs die logische Struktur, der diese Wirklichkeit folgt, in einer vorher nicht denkbaren Weise zu durchleuchten. Auf ein gegenüber dem Hilbertschen System abgeschwächtes Axiomensystem ohne Parallelenaxiom, lässt sich die absolute Geometrie begründen: Dort gibt es dann entweder keine Parallelen (elliptische Geometrie) oder durch einen Punkt außerhalb einer Geraden beliebig viele Parallelen (hyperbolische Geometrie). Die hyperbolische Geometrie erfüllt Hilberts Axiomengruppen I-III und V, die elliptische Geometrie I, II und V und eine schwächere Version der Kongruenzaxiome (III). (de)
dbo:author
dbo:isbn
  • 3-519-00237-X
  • 3-8171-1583-0
dbo:originalTitle
  • Grundlagen der Geometrie (de)
  • Euklidische und nichteuklidische Elementargeometrien (de)
  • Grundlagen der Geometrie (de)
  • Euklidische und nichteuklidische Elementargeometrien (de)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1282732 (xsd:integer)
dbo:wikiPageRevisionID
  • 158887315 (xsd:integer)
prop-de:abruf
  • 2013-06-09 (xsd:date)
prop-de:auflage
  • 1 (xsd:integer)
  • 14 (xsd:integer)
prop-de:autor
  • Benno Klotzek
prop-de:datum
  • 1999 (xsd:integer)
  • 2001 (xsd:integer)
prop-de:jahrea
  • 1899 (xsd:integer)
prop-de:online
prop-de:ort
  • Frankfurt am Main
  • Stuttgart
dc:publisher
  • Harri Deutsch
  • Teubner
dct:subject
rdf:type
rdfs:comment
  • David Hilbert verwendet für seine Axiomatische Grundlegung der euklidischen Geometrie (im dreidimensionalen Raum) „drei verschiedene Systeme von Dingen“, nämlich Punkte, Geraden und Ebenen, und „drei grundlegende Beziehungen“, nämlich liegen, zwischen und kongruent. Über die Natur dieser „Dinge“ und auch ihrer „Beziehungen“ macht Hilbert als Formalist keinerlei Annahmen. Sie sind ausschließlich implizit definiert, nämlich durch ihre Verknüpfung in einem Axiomensystem. (de)
  • David Hilbert verwendet für seine Axiomatische Grundlegung der euklidischen Geometrie (im dreidimensionalen Raum) „drei verschiedene Systeme von Dingen“, nämlich Punkte, Geraden und Ebenen, und „drei grundlegende Beziehungen“, nämlich liegen, zwischen und kongruent. Über die Natur dieser „Dinge“ und auch ihrer „Beziehungen“ macht Hilbert als Formalist keinerlei Annahmen. Sie sind ausschließlich implizit definiert, nämlich durch ihre Verknüpfung in einem Axiomensystem. (de)
rdfs:label
  • Hilberts Axiomensystem der euklidischen Geometrie (de)
  • Hilberts Axiomensystem der euklidischen Geometrie (de)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of