Property |
Value |
dbo:abstract
|
- Das Zwei-Zettel-Spiel oder auch Zwei-Umschläge-Problem untersucht die Frage, mit welcher Strategie man die größere von zwei Zahlen finden kann, wenn von diesen beiden Zahlen eine Zahl unbekannt ist und man zudem nur weiß, dass beide Zahlen voneinander verschieden sind. Intuitiv würde man vermuten, dass die Wahrscheinlichkeit, unter diesen Voraussetzungen die größere Zahl korrekt zu bestimmen, bei 50 Prozent liegt. Tatsächlich zeigt sich aber, dass sich mit einer geeigneten Strategie die Wahrscheinlichkeit auf einen Wert echt größer als 50 Prozent steigern lässt. (de)
- Das Zwei-Zettel-Spiel oder auch Zwei-Umschläge-Problem untersucht die Frage, mit welcher Strategie man die größere von zwei Zahlen finden kann, wenn von diesen beiden Zahlen eine Zahl unbekannt ist und man zudem nur weiß, dass beide Zahlen voneinander verschieden sind. Intuitiv würde man vermuten, dass die Wahrscheinlichkeit, unter diesen Voraussetzungen die größere Zahl korrekt zu bestimmen, bei 50 Prozent liegt. Tatsächlich zeigt sich aber, dass sich mit einer geeigneten Strategie die Wahrscheinlichkeit auf einen Wert echt größer als 50 Prozent steigern lässt. (de)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- Das Zwei-Zettel-Spiel oder auch Zwei-Umschläge-Problem untersucht die Frage, mit welcher Strategie man die größere von zwei Zahlen finden kann, wenn von diesen beiden Zahlen eine Zahl unbekannt ist und man zudem nur weiß, dass beide Zahlen voneinander verschieden sind. Intuitiv würde man vermuten, dass die Wahrscheinlichkeit, unter diesen Voraussetzungen die größere Zahl korrekt zu bestimmen, bei 50 Prozent liegt. Tatsächlich zeigt sich aber, dass sich mit einer geeigneten Strategie die Wahrscheinlichkeit auf einen Wert echt größer als 50 Prozent steigern lässt. (de)
- Das Zwei-Zettel-Spiel oder auch Zwei-Umschläge-Problem untersucht die Frage, mit welcher Strategie man die größere von zwei Zahlen finden kann, wenn von diesen beiden Zahlen eine Zahl unbekannt ist und man zudem nur weiß, dass beide Zahlen voneinander verschieden sind. Intuitiv würde man vermuten, dass die Wahrscheinlichkeit, unter diesen Voraussetzungen die größere Zahl korrekt zu bestimmen, bei 50 Prozent liegt. Tatsächlich zeigt sich aber, dass sich mit einer geeigneten Strategie die Wahrscheinlichkeit auf einen Wert echt größer als 50 Prozent steigern lässt. (de)
|
rdfs:label
|
- Zwei-Zettel-Spiel (de)
- Zwei-Zettel-Spiel (de)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is foaf:primaryTopic
of | |