In der Mathematik verwendet man den aus der Mengenlehre von Georg Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern. Für endliche Mengen ist die Mächtigkeit gleich der Anzahl der Elemente der Menge, das ist eine natürliche Zahl einschließlich der Null. Für unendliche Mengen benötigt man etwas Vorarbeit, um ihre Mächtigkeiten zu charakterisieren. Die im folgenden gemachten Definitionen und Folgerungen sind aber auch im Falle endlicher Mengen gültig.

Property Value
dbo:abstract
  • In der Mathematik verwendet man den aus der Mengenlehre von Georg Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern. Für endliche Mengen ist die Mächtigkeit gleich der Anzahl der Elemente der Menge, das ist eine natürliche Zahl einschließlich der Null. Für unendliche Mengen benötigt man etwas Vorarbeit, um ihre Mächtigkeiten zu charakterisieren. Die im folgenden gemachten Definitionen und Folgerungen sind aber auch im Falle endlicher Mengen gültig. (de)
  • In der Mathematik verwendet man den aus der Mengenlehre von Georg Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern. Für endliche Mengen ist die Mächtigkeit gleich der Anzahl der Elemente der Menge, das ist eine natürliche Zahl einschließlich der Null. Für unendliche Mengen benötigt man etwas Vorarbeit, um ihre Mächtigkeiten zu charakterisieren. Die im folgenden gemachten Definitionen und Folgerungen sind aber auch im Falle endlicher Mengen gültig. (de)
dbo:author
dbo:isbn
  • 978-3-642-01444-4
dbo:originalTitle
  • Mengenlehre (de)
  • Einführung in die Mengenlehre: Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo (de)
  • Mengenlehre (de)
  • Einführung in die Mengenlehre: Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo (de)
dbo:thumbnail
dbo:wikiPageID
  • 57346 (xsd:integer)
dbo:wikiPageRevisionID
  • 157774363 (xsd:integer)
prop-de:auflage
  • 3 (xsd:integer)
prop-de:autor
  • Oliver Deiser
prop-de:band
  • Nr. 999
prop-de:doi
  • 101007 (xsd:integer)
prop-de:jahr
  • 1928 (xsd:integer)
  • 2010 (xsd:integer)
prop-de:ort
  • Berlin
  • Berlin/Heidelberg
prop-de:reihe
  • Sammlung Göschen
dc:publisher
  • De Gruyter
  • Springer
dct:subject
rdf:type
rdfs:comment
  • In der Mathematik verwendet man den aus der Mengenlehre von Georg Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern. Für endliche Mengen ist die Mächtigkeit gleich der Anzahl der Elemente der Menge, das ist eine natürliche Zahl einschließlich der Null. Für unendliche Mengen benötigt man etwas Vorarbeit, um ihre Mächtigkeiten zu charakterisieren. Die im folgenden gemachten Definitionen und Folgerungen sind aber auch im Falle endlicher Mengen gültig. (de)
  • In der Mathematik verwendet man den aus der Mengenlehre von Georg Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern. Für endliche Mengen ist die Mächtigkeit gleich der Anzahl der Elemente der Menge, das ist eine natürliche Zahl einschließlich der Null. Für unendliche Mengen benötigt man etwas Vorarbeit, um ihre Mächtigkeiten zu charakterisieren. Die im folgenden gemachten Definitionen und Folgerungen sind aber auch im Falle endlicher Mengen gültig. (de)
rdfs:label
  • Mächtigkeit (Mathematik) (de)
  • Mächtigkeit (Mathematik) (de)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of